Analog Computer Applications

The Lorenz 96 model

1 Introduction

In 1996, EDWARD NORTON LORENZ! of “LORENZ attractor fame'? described another
chaotic system, now know as the LORENZ 96 model which consists of N € NN > 4

coupled differential equations of the form:3
& = (Tig1 — Ti—2)Ti1 —; + F (1)
with periodic “boundary conditions” (so to speak)
To = TN
T_1=TN-1
IN+1 = 21

and a forcing constant F' which is typically set to F' = 8. All equations (1) can be scaled by

a common scaling factor A = 2—10, yielding
To = 20(1‘1 — .%'2).%3 —x9+ F* (2)
T = 20(1’2 — %3)%0 —x + F* (3)
To = 20(%3 — .1‘0)1'1 — 9 + F* (4)
T3 = 20(1‘0 — $1)J}2 — a3+ F* (5)

for N = 4 with a forcing constant F™*.

2 Implementation

The implementation of equations (2), (3), (4), and (5) is straightforward and shown in figure
1.

123.05.1917-16.04.2008
2See application note #2 from 13.09.2016, https://analogparadigm.com/downloads/alpaca_2.pdf.
3See [LORENZ 1996, pp. 4 f.] and [STERK et al. 2017].
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Figure 1: Implementation of the scaled LORENZ 96 system with N =4
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Analog values
point attractor | cyclic attractor | chaotic attractor
F*> F*< | F*> [*< | F*> F*<
0 0.051 | 0.052 0.627 | 0.627 0.77

Table 1: Influence of F*
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Figure 2: Start of the periodic attractor

3 Results

The system shows interesting behavior for varying F'*, with three attractor types shown in
table 1.

Figures 2, 3, 4, and 5 show the behavior of the system for various values of F*. On the
right are phase space plots with an FFT analysis on the left. The switch from periodic to
chaotic behavior can be clearly seen in the spectrum which starts to resemble more and more
that of a noise signal.

The variation of the forcing constant F™* can be automated by integrating over a suitably
small constant ¢ such as ¢ = —0.2 yielding a linear ramp F*(¢) running from 0 to 1 in
5 seconds with the integrator set to kg = 1. Plotting z(t) against F"*(t) yields a simple
bifurcation plot of the LORENZ 96 system as shown in figure 6.
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Figure 3: End of the periodic attractor
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Figure 5: End of the chaotic attractor (maximum F™*)
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Figure 6: Simple bifurcation diagram of the LORENZ 96 system
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